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If certain preconditions are met, the Johnson-Mehl-Avrami-Kolmogorov (JMAK) kinetic
equation is exactly accurate for nucleation and growth reactions with linear growth and is,
at least, a good approximation for nucleation and growth reactions with parabolic growth.
These preconditions include randomly distributed product phases, isotropic growth and
constant equilibrium state. Mechanisms causing deviations from these preconditions
include: capillarity effect, vacancy annihilation, blocking due to anisotropic growth. It is
shown that deviations lead to a modification of the overall transformation, which can be
approximated well by a single equation:

α = 1 −
[

(k(T )t)ns

ηi
+ 1

]−ηi

where α is the fraction transformed, ηi is the impingement parameter, ns and k(T ) are
parameters that depend on growth geometry and growth rate. The factors which influence
the impingement parameter are discussed. C© 2001 Kluwer Academic Publishers

1. Introduction
In studies of nucleation and growth type reactions, often
the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equa-
tion [1–6] is assumed to be valid. In generalised form
the JMAK equation gives the (average) fraction trans-
formed, α, as a function of the time, t , for isothermal
reactions:

α = 1 − exp�−(k(T )t)n A� (1)

where n A is a constant often referred to as the Avrami
exponent and k(T ) is a temperature dependent factor
(often taken as an Arrhenius type expression). The gen-
eral equation for n A is [2, 7]:

n A = Ndimg + B (2)

where g is 1 for linear growth or 1/2 for parabolic (dif-
fusion controlled) growth, B is 0 in the case of site sat-
uration (no nucleation during the transformation), or 1
for continuous nucleation (at constant nucleation rate),
Ndim is the dimensionality of the growth. The JMAK
equation (Equation 1) has been applied to many nucle-
ation and growth type reactions, including such diverse
reactions as diffusion controlled precipitation (for re-
cent examples see e.g. [8–11]), recrystallisation (e.g.
[12]), ferroelectric/ferromagnetic switching (e.g. [13]),

surface growth in gas/vacuum environments (e.g. [14]).
Materials analysed range from lipids, sugars, polymers,
to metals and rock. Notwithstanding the apparent wide
range of applicability, many cases of deviations from
JMAK kinetics have been reported [7, 15–27]. Under-
standing the causes of deviations from standard JMAK
kinetics and the development of improved models is
an important interdisciplinary research area. For exam-
ple, in metal processing, it is important because JMAK
models are used in models for various industrial pro-
cesses (e.g. in models for precipitation and concomi-
tant precipitation hardening in industrial Al-based al-
loys [8, 28]).

It is thought that deviations from the JMAK equation
can generally be explained by a breakdown of assump-
tions made in the derivation of the JMAK model, and in
the present work, we will investigate the consequences
of such deviations from these assumptions. Recently, it
has been shown [21–26] that several precipitation re-
actions which do not fit to JMAK kinetics can be fitted
by an equation of the type:

α = 1 −
[

(k(T )t)nS

ηi
+ 1

]−ηi

(3)

where ηi is the so-called impingement parameter, nS is
a parameter akin to the Avrami exponent in Equation 1,
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k(T ) has the same meaning as in Equation 1. The latter
equation was derived by using the extended volume (see
e.g. [4, 21, 29]), and impingement is taken into account
by using:

dα

dαext
= (1 − α)λi (4)

where αext is the extended fraction transformed and λi

is a (positive) constant (ηi = 1/(λi −1)).∗ Equation 3 in-
corporates the JMAK equation: in the limit for ηi → ∞
Equations 1 and 3 are equivalent and n A = nS [21]. As
detailed in previous work (see e.g. [2, 16, 21, 24, 30–
32]), the extended fraction transformed, αext, is directly
related to rate of growth of individual nuclei and the nu-
cleation rate.

It is noted that the above treatment of impingement is
not a rigorous statistical treatment. Instead, Equation 4
represents an approximation that uses an impingement
parameter which, at this stage, has a very limited phys-
ical meaning. The meaning of the impingement param-
eter, at this stage, can only be defined for limited cases,
e.g. for λi = 1 impingement is identical to JMAK im-
pingement, which represent an idealised case, the pre-
conditions of which are detailed in the next section. In
previous works [21–27] the use of the adjustable im-
pingement parameter ηi was based mainly on a good
fit with experimental data, and no theoretical justifi-
cation was provided. In the present work, it will be
shown how Equation 3, and specifically the adjustable
impingement parameter ηi , can be justified. In addition,
the physical meaning of ηi will be investigated by de-
termining how microstructural and kinetic parameters
influence it.

2. Theory: breakdown of JMAK assumptions
and its consequences

Recent theoretical work [3, 33] has proven that the
JMAK kinetic equation is accurate for reactions with
linear growth,† provided:

i) the sample is initially homogeneous,
ii) product phases are randomly distributed,

iii) if nucleation occurs, nuclei are randomly dis-
tributed,

iv) average growth rates are independent of posi-
tion in the sample,

v) the reaction is not influenced by any time-
dependent process (defect annihilation/creation, reliev-
ing/creation of internal stresses) in the sample which is
not directly related to the transformation studied,

∗ Different authors have used different definitions and/or symbols
(c, i, γ ) to express the degree of impingement within the same frame-
work that forms the basis for Equations 3 and 4. To convert between
the expressions used in this work and Refs. [15, 21–27, 29, 30] use
λi = c + 1 = i = 2 − γ . Note also that in several works different sym-
bols for the fraction transformed are used, whilst the meaning of k
differs somewhat between the different publications.

† Note that this proof shows that the treatment proposed in Refs. [16,
17] in which the so-called phantom nuclei are eliminated, is incor-
rect. Hence, this treatment cannot form the basis for an explanation of
deviations from the JMAK theory (see also [4, 5, 6]).

vi) impingement on objects other than neighbour-
ing domains of the product phase is negligible,

vii) so-called blocking resulting from anisotropic
growth (34–37) is negligible, and

viii) the equilibrium state is constant, i.e. the amount
that can transform does not depend on time (this as-
sumption can breakdown under non-isothermal condi-
tions, see e.g. [21, 24]).

We will refer to these as JMAK assumptions i–viii.
Theoretical investigations into the effect of the break-
down of assumptions ii [38], iii-iv [39], vi [30, 40] and
vii [34–37, 41] have been performed: they show that in
these cases deviations from the JMAK kinetic equation
(Equation 1) occur and that, in general, impingement
becomes stronger, which results in a slowing down of
the later stages of the reaction.

For parabolic (i.e. diffusion controlled) growth reac-
tions, the impingement of diffusion fields around ran-
domly distributed precipitates (so-called soft impinge-
ment) is an extremely complex mathematical problem.
The problem is simplified for regular arrays, and Ham
[42, 43] has shown that for precipitates growing in 3
dimensions situated on a regular cubic array, JMAK ki-
netics is accurate up to a transformed fraction of about
0.7 to 0.8, whilst for later stages the reaction is slightly
slower than JMAK kinetics. Taking into account that
changing from a regular array to a random distribution
of growing product phase will generally speed up the
latter stages of the transformation, this indicates that
also for parabolic growth reactions which conform to
the JMAK assumptions, JMAK kinetics is, at least in
good approximation, accurate. Also Monte Carlo sim-
ulations of the transformations of grains which grow
according to a diffusion controlled mechanism (i.e.
growth rate is proportional to the inverse of the par-
ticle radius) indicate that JMAK kinetics is, at least,
a good approximation for diffusion controlled trans-
formations [44]. A similar conclusion was reached by
Uebele and Hermann [38] who approximated diffusion
controlled growth in a mathematical model which con-
siders parabolic growth and hard impingement. Their
work shows that although strictly speaking the Equa-
tion 1 is not valid, deviations from this equation are very
small and may in practice be neglected. From these
works we may conclude that Equation 1 is at least a
very good approximation of the transformed fraction
in a diffusion controlled reaction. As it will be shown
in this paper that for precipitation reactions the JMAK
assumptions are generally not valid, the discussion on
whether JMAK kinetics is exact or just an accurate ap-
proximation, will not be further pursued.

Deviations from assumptions i–viii will result in a
modification of the overall kinetics of the reaction. In
this section, several of these deviations will be consid-
ered and it will be shown how they (may) influence the
overall kinetics.

2.1. Inhomogeneous sample
If the sample is inhomogeneous, the amount of product
phase may vary with position in the sample. Consider
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for example a sample in which the concentration of
reactant is different in different areas of the sample,
whilst all areas transform according to JMAK kinet-
ics with the same k and n to a product phase. Clearly
the average concentration transformed on completion
of the reaction is the average concentration of reac-
tant available and it is readily verified that the over-
all kinetics of transformation conform to JMAK kinet-
ics (Equation 1). Hence, for an inhomogeneous sample
with constant k and n the overall transformation equa-
tion is unchanged: if individual areas transform accord-
ing to JMAK kinetics also the average over the whole
sample will conform to JMAK kinetics.

2.2. Nucleation and growth rates that vary
with position

In contrast to the previous case, variation in the growth
rate will alter the overall kinetic equation for the reac-
tion. To illustrate this, we first consider a general case in
which k is constant for groups of nuclei, whilst k varies
from location to location in the sample, with the total
distribution of k values being Gaussian with a central
value ko, and width of the distribution w, whilst k is
supposed to not vary with time. It is assumed that im-
pingement in each location can be approximated by the
JMAK expression. In Fig. 1 several curves for various
values of w/ko are presented (in all cases n = 1 1

2 , i.e.
parabolic growth with Ndim = 3 is considered). Equa-
tion 3 can represent all curves in Fig. 1 very well (accu-
racy better than 2% up to α = 0.9). In Fig. 2 the values
of ηi obtained from an optimised fit as in Fig. 1 are
presented as a function of the width of the Gaussian k
distribution. Note that when the distribution broadens
ηi approaches 1 whilst for an infinitely narrow distri-
bution the JMAK equation is obtained and ηi = ∞.

2.3. Growth rates that vary with position
and time: vacancy loss to defects

To consider a more specific example of a process in
which growth rates vary with position and time, the av-
erage transformation for a reaction that is influenced by
annihilation of vacancies is calculated. The following
hypothetical situation, which is on many points inspired
by processes occurring during precipitation, is consid-

Figure 1 Averaged fraction transformed for normally (Gaussian) dis-
tributed JMAK processes, with w/ko = 0.3, 0.5 and 0.9, n = 1.5.

Figure 2 Value of ηi for an optimal fit of Equation 3 to averaged frac-
tion transformed for normally (Gaussian) distributed JMAK processes,
n = 1.5 (Fit is optimised for α between 0 and 0.8).

ered. An alloy is quenched from high temperature to
a lower ageing temperature. At the ageing temperature
excess vacancies diffuse to lattice defects (grain bound-
aries, dislocations, etc.), where they annihilate. Simul-
taneously, a transformation (for instance precipitation
of alloying elements) occurs, for which the rate is de-
pendent on the amount of vacancies. We will consider
the case of site saturation only, i.e. we will assume all
nuclei to be formed in the very early stages of the trans-
formation and, effectively, transformation occurs with
a constant number of nuclei. (This is a valid approxima-
tion for many precipitation reactions in Al based alloys,
see e.g. [7,22,24].) For this example we will assume that
only annihilation at grain boundaries is relevant, and to
limit computations we will assume grains to be thin in
one direction, i.e. vacancy diffusion occurs effectively
in one single direction. The solution to this diffusion
problem is known (see e.g. [45]); the vacancy concen-
tration, xv , as a function of the distance from the centre
of the grain, y, is given by:

xv(y, t) = xv(y, 0)

[
1 −

∞∑
n = 1

(−1)n

(
erfc

(2n + 1)d − y

2
√

Dt

+ erfc
(2n + 1)d + y

2
√

Dt

)]
(5)

where d is the half-thickness of the grain, xv(y, 0) is the
initial concentration of vacancies, which is assumed to
be homogeneous. The rate constant k (from Equation 1)
is assumed to be a linear function of the concentration
of vacancies, xv(y, t), where y is the distance from the
centre of the grain, i.e.:

k(y, t) = k1 + (k2 − k1)(xv(y, t)/xv(t = 0)) (6)

where k1 is the rate constant in material unaffected
by annihilation at grain boundaries, and k2 is the rate
constant in material in which the vacancy concentration
has reached the equilibrium value. The assumed linear
relationship between k and xv is based on the notion
that the frequency of an alloying atom making a dif-
fusional ‘jump’ from one lattice position to a next is
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Figure 3 Transformation curves for a reaction which is influenced by
vacancy annihilation (k2/k1 = 7). Presented are fractions transformed at
various positions in the sample (—-—-), the average fraction transformed
(• • • •) and a fit of the latter based on Equation 3 with ηi = 1.15
and nS = 1.42 (— —). Also presented is the average concentration of
vacancies remaining in the sample (· · · ·).

mainly dependent on the amount of unoccupied lattice
sites. It is assumed that all regions of the sample trans-
form according to JMAK kinetics (Equation 1) with
variable k(y, t) as given above and a constant reaction
exponent n.

In order to evaluate a realistic example we will con-
sider precipitation in Al based alloys. Lattice parame-
ter determinations of liquid quenched Al-Si and Al-Mg
alloys aged at about 150◦C indicate that free vacan-
cies are annihilated before significant precipitation oc-
curs [46]. Hence, these vacancies will have no influence
on precipitation, and only vacancies bound to alloy-
ing atoms will influence precipitation. As diffusion of
these vacancies is slowed down by binding to the al-
loying atoms, their annihilation will generally overlap
with the precipitation process. Results of the evalua-
tion of the above equations are presented in Fig. 3. For
the calculations, realistic D, k1 and k2 values are used:
k2/k1 is taken as 7 (see Appendix I), whilst D is ad-
justed such that the average vacancy concentration is
halved when α = 0.5. Again the overall transformation
curve has been fitted with Equation 3. Also for this
case the JMAK equation (Equation 1) can not describe
the overall transformation, whilst Equation 3 provides
a very accurate representation of the overall kinetics.
By variation of the parameters (k1, k2, D, d, nS) it was
verified that the latter conclusion is generally valid, pro-
vided k2/k1 is smaller than about 20. It is interesting to
note that the optimal nS for fits in Fig. 3 is somewhat
lower than the n A in the JMAK equation. This is due
to the decrease of the vacancy concentration with time,
which has a decelerating effect on the transformation.

Obviously, several assumptions made in the pre-
sented example are specific to the type of reaction,
geometries of defects or grains and the rate of vacancy
annihilation. Nevertheless, several generally valid con-
clusions, which have been verified by varying param-
eters, can be drawn from this model. Firstly, vacancy
loss changes the kinetics of the reaction: Equation 1 is
not valid and instead Equation 3 can give a good de-
scription of the kinetics. The deviation from Equation
1 is due to two effects: i) in the vacancy diffusion zone
k values vary with position leading to a “smearing out”

of the transformation curve similar to the process de-
scribed in Section 2.2, and ii) due to the annihilation of
vacancies the effective value of k decreases with time,
leading to a deceleration as compared to JMAK kinet-
ics. Further, the overall average transformation curve
depends on k1, k2, D and d.

2.4. Interfacial energy: the Gibbs-Thomson
effect

Due to a contribution of surface energy, the Gibbs free
energy (per mole) of a multi-phase sample will depend
on the interfacial area, i.e. on the size of the phases. If the
product of a reaction consists of at least two phases this
interfacial energy contribution will influence the local
metastable equilibrium state. In precipitation reactions
this is known as the Gibbs-Thomson (or capillarity) ef-
fect (see e.g. [47]): the local metastable solubility of
alloying elements around a precipitate increases with
decreasing radius of that precipitate (i.e. increasing lo-
cal curvature of the interface). In the following it will
be shown that for precipitation reactions this effect has
to be taken into account and that the Gibbs-Thomson
effect significantly modifies the overall kinetics of a
precipitation reaction.

Consider a precipitation reaction in which precipi-
tates are spherical, with radius r . At the start of the
transformation, Np nuclei are present, and during the
transformation nucleation is negligible. The precipitate/
matrix interfacial energy, σs , is constant, whilst
the equilibrium solubility is taken according to a regular
solution model (see e.g. [48]):

ceq(T ) = c∞ exp

(−�Hsol

kB T

)
(7)

where c∞ is a constant and �Hsol is the enthalpy of
formation (in J per mole precipitate). In keeping with
this model it is assumed that the metastable solubility,
cms, is determined by an effective enthalpy of formation
of precipitates, �Heff, which takes the energy of the
interface into account:

cms(T ) = c∞ exp

(−�Heff

kB T

)
(8)

�Heff = �Hsol + Q(r, σs) (9)

where Q(r, σs) is the total energy related to the interface
per mole precipitate, which can be calculated straight-
forward to yield:

�Heff = �Hsol − Npσs

coρa
B1

(
coρa

Npρp

)2/3

ξ−1/3 (10)

where ρa, ρp are the densities if the matrix phase and
the precipitate, respectively, co is the initial concentra-
tion of solute in the matrix, B1 = 4π/(4/3π )2/3, ξ is the
fraction of the initial solute present that has precipitated.
One key point follows directly from this description: if
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Figure 4 Transformation curves for a reaction which is influenced by
the Gibbs-Thomson effect. Presented are curves for various values of
xm .

no coarsening occurs, the amount of solute that can pre-
cipitate depends on r , and the latter, in turn, depends on
the amount of growing nuclei. This maximum amount
of solute that can precipitate is given by:

ξm = 1 − cms

co
(11)

and from Equations 8 and 9 with ξ = ξm, ξm can be
evaluated numerically.

In a simplified assessment of the influence of capil-
larity of transformation rates, we will calculate trans-
formation curves for various values of Np, assuming
that the amount of precipitates during the transforma-
tion is constant. The transformation for each value of
Np is assumed to follow JMAK kinetics, i.e.:

ξ

ξm
= 1 − exp(−[kt]n A ) (12)

In this equation kn is proportional to Np. For the various
parameters we will take values for precipitation of Si
from Al, the interfacial energy in this system has been
estimated at 1.5 J/m2 [48]. Results, presented in Fig. 4,
illustrate the main effects of the interfacial energy. For
high Np the initial transformation rate is high, but as
ξm is low the sample will not attain equilibrium without
coarsening. For lower Np the initial transformation rate
is lower, but as ξm is closer to equilibrium, the transfor-
mation rate for the later stages will be higher. Whilst
Fig. 4 illustrates some of the issues at play, it is clear that
an exact model would have to take into account the size-
dependent metastable solubility around each growing
particle as well as a continuous evolution from growth
to coarsening, but no such models are available.‡ To ob-
tain an estimate of the magnitude of the deviation from
JMAK kinetics two rather crude estimates for such a
model were analysed. In a first attempt, evolution from
growth to coarsening was approximated by taking the
average of the processes in Fig. 4, results are indicated
by the grey line in Fig. 4. It is interesting to note that

‡ An approximate model incorporating assumptions concerning the con-
tinuous evolution from growth to coarsening stage has recently been
presented by Deschamps and Brechet [49].

this averaged process can be represented very well with
Equation 3 (dotted line in Fig. 4, for which ηi = 2.5).
In a slightly more refined treatment of the continuous
evolution from growth to coarsening was obtained from
a simplified form of the LSW theory (see Appendix II).
Again the process can be represented very well with
Equation 3.

The above example shows that for precipitation in
Al-Si, the Gibbs-Thomson effect causes a modification
of the overall kinetics of the reaction. The processes in
this example are generally applicable to any reaction
that results in the creation of a new interface.

2.5. Internal stresses
If either nucleation rates or growth rates are sensitive
to stresses, internal stresses in a sample can influence
the reaction kinetics. These stresses will vary accord-
ing to position in the sample and as a result the overall
transformation will be the average of processes with
different nucleation rates or growth rates. In Section
2.2 it was shown that this leads to a smearing out of
the transformation curve and that JMAK kinetics is no
longer valid. If the distribution of the different nucle-
ation rates or growth rates is Gaussian or in approxima-
tion Gaussian, Equation 3 will yield a good description
of the overall reaction.

An especially striking example of the effect of inter-
nal stresses on reactions can be found in heat treatable
Al-based MMCs, where the stresses around reinforcing
ceramic particles cause precipitation rates to vary with
distance from the reinforcing particle and on orientation
of the precipitate relative to the stress field [50, 51]. In
monolithic alloys internal stresses will be much lower
and effects correspondingly smaller. However, as elas-
tic properties are generally anisotropic, temperature
changes will inevitably create internal stresses in all
polycrystalline samples. Thus internal stresses can be
expected in all types of samples and for reactions which
are sensitive to those stresses, deviations from JMAK
reactions can be anticipated.

2.6. Transformations with anisotropic
growth rates

In transformations producing particles with anisotropic
growth rates, i.e. where particles are not equiaxed, fast
moving interfaces can impinge on slow moving inter-
faces. This can mean that areas that could be trans-
formed by the fast moving interface if it had not been
stopped, are effectively ‘shielded’ by the blocking par-
ticle. This mechanism is depicted schematically in
Fig. 5. (The particular example depicts a transforma-
tion in which the preferential growth directions are ori-
ented normal to each other. This blocking mechanism
will cause impingement to be stronger as compared to
JMAK type impingement. As this impingement is only
important after growing transformed regions reach a
certain minimum size, this type of deviation from the
JMAK assumptions will influence only the later stages
of the reaction where it will cause an additional reduc-
tion of the reaction rate. This type of deviation from
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Figure 5 Schematic illustration of blocking during the growth of
anisotropic particles. The figure depicts a 2D transformation with nu-
cleation and growth in which the growing particles are oriented normal
to each other.

Figure 6 Avrami exponents vs. fraction transformed for ηi = 1 to 12, as
calculated from Equation 3. Also presented are Avrami exponents for a
one dimensional model representing the case of blocking resulting from
anisotropic growth with growth rate anisotropy gr = 5 and 10 (data from
Ref. 37). Note that for a large range of α values the latter data can be
fitted well by Avrami exponents from Equation 3.

JMAK kinetics for the case of linear growth has been
modelled by Birnie and Weinberg [34–37] and below
it will be shown that also for these types of deviations
from the JMAK assumptions Equation 3 will give a
good approximation of the overall reaction kinetics.

In Fig. 6 the Avrami exponent as calculated from
Equation 3 is plotted vs. α, where they are compared
with results obtained by Birnie and Weinberg [34] for a
1D model of particles growing with anisotropic growth
rates. These curves resemble each other providing α

is limited to about 0.9 and growth rate anisotropies
are smaller than 10. Hence for these growth rate
anisotropies Equation 3 will give a good representa-
tion of the overall transformation, with ηi increasing
with growth rate anisotropy. For higher growth rate
anisotropies Weinberg and Birnie’s results tend to devi-
ate from Equation 3, especially for high α. It should be
noted that the case of a 1D model with random orien-
tations of the elongated precipitates, as discussed here,

represents a specific case, and true quantitative analysis
of impingement in more realistic cases requires more
complicated models.

2.7. Impingement on defects, inclusions
and interfaces

Impingement on defects, inclusions, interfaces, and
generally all obstacles other than neighbouring trans-
formed areas will influence the overall kinetics of a
reaction. As this impingement is only important after
growing transformed regions reach a certain minimum
size, this type of deviation from the JMAK assump-
tions will influence only the latter type of the reaction
where it will cause a deceleration. Impingement against
defects, like grain boundaries and inclusions has been
investigated in some detail by other researchers [30–
32, 40]. Within the context of this paper it is especially
interesting to note that Tagami and Tanaka approached
the problem of restricted nucleation and growth within
a thin plate (especially the example of a Si layer bounde
by SiOx was used) by making the approximation that
transformation occurs by the instantaneous transforma-
tion of domains all of which reach an identical, fixed
size in the extended volume. It was shown that in this
case Equation 3 is reproduced. Hence, whilst in previ-
ous cases discussed it could be shown that Equation 3,
yields a good approximation of the transformation ki-
netics, in this simplified treatment of impingement on
planar obstacles Equation 3 exactly reproduces the
kinetics.

3. The relation between the breakdown of
JMAK assumptions and the overall
impingement coefficient ηi

In the previous section we have investigated the effects
that result from the breakdown of the preconditions
for the single JMAK process (Equation 1). Generally,
single microstructural or thermodynamic phenomena
result in one or more of these preconditions being vi-
olated, but it is possible to separate out the different
effects and assign them to four main classes of de-
viations. The first one we will refer to as ‘inhomo-
geneity type’ deviations: k and n are constant over the
whole of the sample, but the maximum amount that
can transform is position dependent. In Section 2.1 it
was shown that a pure ‘inhomogeneity type’ deviation
of the JMAK assumptions does not affect the overall
type of kinetics: if individual areas transform according
to JMAK kinetics the overall average reaction does so
too. The second type we will refer to as ‘rate distribu-
tion type’ deviations: n and the maximum amount that
can transform are constant, but k is position dependent.
In Section 2.2 it was shown that a pure ‘rate distribu-
tion type’ deviation affects the overall type of kinetics:
JMAK kinetics is no longer valid and, providing the
distribution of the different nucleation rates or growth
rates is in approximation Gaussian, Equation 3 yields a
good description of the overall reaction, with nS

∼= n A.
It was shown that the Gibbs-Thomson effect leads to
a breakdown of the JMAK assumptions as a result of
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this rate distribution type breakdown intermixed with
an ‘inhomogeneity type’ effect. The third group of devi-
ations will be referred to as ‘blocking’ type deviations:
growth is blocked in a way that is not taken into ac-
count in the JMAK equation. Examples are blocking
by defects, grain boundaries, edges of a sample or inert
particles, and also blocking due to anisotropic growth
rates of particles is considered to be part of this group.
The fourth type of deviation from the assumptions for
JMAK kinetics is time dependency of k. This ‘time-
dependent rate type’ deviation was encountered mixed
with ‘rate distribution type’ deviations in the example
concerning vacancy diffusion and annihilation. Also in
this case Equation 3 provided a good approximation of
the overall kinetics, but nS is no longer equal to n A.

From the above it is concluded that if kinetics are al-
tered due to a deviation from the JMAK assumptions,
the resulting kinetics of the overall transformation can
generally be well described by Equation 3. This in-
dicates that for each individual type of breakdown of
JMAK assumptions Equation 3 will, in good approxi-
mation, describe the transformation. A subsequent step
in the analysis will be to analyse the effect that a su-
perposition of different mechanisms (Gibbs-Thomson
effect, vacancy annihilation, etc.) will have on the ki-
netics of the reaction. To perform such an analysis one
may attempt to construct a microstructural model for a
reaction in which for instance the Gibbs-Thomson ef-
fect and vacancy diffusion and annihilation are taken
into account simultaneously. However, such a compli-
cated analysis can be avoided and a generally valid ap-
proximate solution for this superposition can be found
in the following way. Analyse for each different mech-
anism the resulting kinetics of the transformation sepa-
rately, and fit Equation 3 to it. From Fig. 2 one can derive
which distribution of k values with width w is equiva-
lent with this. Hence for each mechanism, j , one finds
a wi . Then, superposition of Gaussian distributions
leads to:

w2
t =

∑
j

w2
j (13)

Once wt is obtained, one can subsequently obtain the
appropriate ηi for the overall reaction which accounts
for all mechanisms which cause a breakdown of the
JMAK assumptions.

4. Application of the kinetic equation
For the purpose of the present paper, data on a number of
reactions have been considered: isothermal calorimetry
data on precipitation of β ′ at 180◦C on an air-cooled Al-
16at%Mg alloy, isothermal calorimetry data precipita-
tion of the L12 ordered phase in air-cooled Al-16at%Mg
at 80 and 85◦C, precipitation of the L12 ordered phase
in water quenched Al-Li and isothermal calorimetry
data on precipitation of the Si phase in an air cooled
Al-6at%Si alloy (for experimental details see [52]). In
line with previous publications [21–27] this new data
could be fitted well by Equation 3, with ηi close to
unity, whilst Equation 1 fitted badly. At present a de-

Figure 7 Normalised heat flow curve for precipitation in air-cooled Al-
6at%Si at 230◦C (dashed grey line). The fit (thin, black line) is obtained
with Equation 3 and ηi = 1.1, nS = 1.5.

tailed analysis of this new data will be limited to the
data on the Al-Si alloy.

In Fig. 7 a typical example of an isothermal calorime-
try curve for an air-cooled Al-6at%Si alloy is presented.
Differential Scanning Calorimetry (DSC) experiments
have indicated that for Al-Si alloys cooled at these rel-
atively low rates no significant nucleation occurs dur-
ing the course of the reaction [21, 24], and hence nS

should equal 1.5 (see Equation 2). For this reaction
several JMAK assumptions are thought to fail, most
notably because of the Gibbs-Thomson effect, and be-
cause of vacancy annihilation in the course of the pre-
cipitation reaction. The heat flow is proportional to the
rate of the reaction and hence the normalised calorime-
try curve is fitted by dα/dt obtained from Equation 3.
Fig. 7 shows that a near perfect fit of theory and experi-
ment is obtained for ηi = 1.1, nS = 1.5. (Only for t < 10
ks, i.e. in the very first stages of the reaction, some de-
viation between theory and experiment occurs. This is
due to a separate precipitation process via growth of
undissolved Si particles as indicated in earlier studies
[21, 24]) The value nS = 1.5 obtained from the fit cor-
responds to diffusion controlled growth of pre-existing
nuclei, whilst the obtained value of ηi can be explained
in the following way. The studied examples in Sec-
tions 2.3 indicate that the Gibbs-Thomson effect re-
sults in ηi = 2.5. The corresponding width of a Gaus-
sian distribution can be obtained with Fig. 2 and this
results in w1 = 0.47. The calculations in Section 2.4
indicated that for vacancy annihilation in an Al-based
alloy ηi ≈ 1.15, i.e. with Fig. 2: w2 = 1.13. With Equa-
tion 12 it follows that for the overall reaction wt = 1.2
and ηi = 1.14. The latter value is very close to the one
obtained in Fig. 7, indicating that the present analysis
of the deviation from JMAK kinetics is sound.

Generally, the activation energy for diffusion of va-
cancies and for diffusion of alloying atoms will be dif-
ferent. This implies that the relative rates of vacancy
annihilation and of precipitation will be temperature
dependent and as a result of this ηi will be temperature
dependent. In line with this it has been noted in previous
works [21, 24] that for DSC experiments where Si pre-
cipitates at about 350–400◦C, ηi is about 2.2, i.e. signifi-
cantly larger than for isothermal precipitation at 230◦C.
This finding can be explained semi-quantitatively on the
basis of the model presented in Section 2.3. For this we
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first calculate the relative vacancy annihilation and pre-
cipitation rates at 400◦C using the activation energies
for diffusion of vacancies and for diffusion of alloying
atoms in Al-Si (about 0.66 and 0.95 eV, respectively).
The precipitation curve obtained via this procedure can
be fitted well with Equation 3 with ηi = 2.9 (curve not
presented), which explains the difference in ηi for the
two experiments.

5. Concluding remarks
In the previous section as well as in previous publica-
tions [21–27] experimental data on a large number of
mostly diffusion controlled reactions have been stud-
ied; all could be fitted well by Equation 3, with ηi close
to unity. Hence, it must be concluded that for precipi-
tation reactions the preconditions for the single JMAK
process (Equation 1) are generally not fulfilled. The
theory and examples presented in Section 2 give a the-
oretical explanation for this finding as it was shown that,
in good approximation, deviations from the JMAK as-
sumptions, and the superpositions of several of these
deviations occurring for a single reaction, all lead to
the kinetic equation Equation 3. For precipitation in an
air-cooled Al-Si alloy (see previous section), the single
most important mechanism resulting in deviations from
the JMAK assumptions appears to be annihilation of va-
cancies. Further also the Gibbs-Thomson effect played
a role.

Based on the findings in this paper it is recommended
that in any analysis of transformation curves it be taken
into account that transformation curves can deviate
from JMAK kinetics due to a wide variety of reasons.
Equation 3, which can take account (at least in good
approximation) of the wide range of deviations consid-
ered in Section 3 of the present paper, can be used very
effectively to this end.

6. Conclusions
The JMAK kinetic equation is valid only under a num-
ber of preconditions: product phases are randomly dis-
tributed, nucleation is random, growth rates are constant
and independent of position in the sample, impinge-
ment against objects other than neighbouring domains
of the product phase is negligible, growth is isotropic,
and the equilibrium state is constant. Several mecha-
nisms which cause deviations from these preconditions
have been identified, they include: the Gibbs-Thomson
(or capillary) effect, vacancy annihilation, blocking due
to anisotropic growth, internal stresses and impinge-
ment on defects. These deviations lead to different mod-
ifications of the overall transformation, which can all be
approximated well by a single equation (Equation 3).
Also the kinetics resulting from superpositions of the
different modifications can be described well by the
above equation. The validity of the equation is assessed
by comparison with transformation curves obtained for
precipitation in an Al-Si alloy. A very good correspon-
dence between experiment and model is found and the
value for ηi obtained from the fit could be explained
quantitatively in terms of two mechanisms leading to

deviations from the JMAK assumptions: the Gibbs-
Thomson effect and vacancy loss.

Appendix I
In a dilute alloy with low concentrations of vacan-
cies (i.e. di-vacancies can be neglected), vacancies are
present as free vacancies, and vacancies bound by so-
lute elements si . The total concentration of vacancies,
C ′

v in an FCC metal can be estimated as [53]:

C ′
v = Cv

{
1 − 12

n=i∑
1

Ci + 12
n=i∑

1

Ci exp

(
Eb

si −ν

kB T

)}

(14)

where Cv is the concentration of vacancies in the
pure metal, Eb

si −v is the binding energy of element si

with a vacancy, and Ci is the concentration of solute i .
From this the amount of vacancies bound by atoms of
a certain a type can be estimated.

If artificial ageing is performed on alloys which are
solution treated at different temperatures, first the free
vacancies are annihilated, and one generally finds that
precipitation rates increases with solution treatment
temperature, Ts . This is ascribed to enhanced diffusion
resulting from increased amounts of vacancies bound
to solute atoms. By comparing precipitation rates of an
alloy quenched from different solution treatment tem-
peratures it is possible to estimate the effect of vacancies
on the ratio k2/k1. Such an estimate is obtained for an
Al-Mg and an Al-Si alloy.

DSC experiments at heating rate 20 ◦C/min on an
Al-13at%Mg alloy solution treated at 420 and 470◦C
showed that the precipitation occurs around 350◦C and
that in the alloy solution treated at the lower temper-
ature precipitation was retarded by about 18◦C [54].
Using Equation A3 in Ref. [55] in combination with
the activation energy for precipitation (about 0.9 eV)
this can be converted to a difference in isothermal pre-
cipitation rate. Then, with Equation 14 in combination
with the binding energy of solute atom and vacancy (es-
timated at about 0.36 eV for Mg), the ratio k2/k1 can
be obtained. For the experiments on Al-13at%Mg this
results in k2/k1 = 6, and the latter value is independent
of precipitation temperature.

Precipitation in a liquid-quenched (LQ) Al-1.3at%Si
alloy is slower as compared to the water-quenched
Al-1.3at%Si alloy. This is interpreted to be due to a
lower vacancy concentration in the LQ alloy result-
ing from lower quenching rate for temperatures below
the solidus [46], and similarly to the method presented
above, a calculation of the ratio k2/k1 can be performed
for the Al-1.3at%Si alloy. No data is available on the ef-
fective solution treatment temperature, Teff, which cor-
responds to the vacancy concentration in the LQ alloy.
It is estimated to be about 100◦C below the solidus (i.e.
at about 490◦C), whilst the solute-vacancy binding en-
ergy is taken as 0.15 eV. This results in k2/k1 = 8. A
reduction of Teff by about 50◦C results in k2/k1 = 5.

In conclusion of this appendix it is estimated that for
precipitation in Al-based alloys k2/k1 is generally in
the order of 5 to 8.
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Appendix II
To derive a simplified treatment of continuous evolution
from growth to coarsening we will proceed as follows.
According to the classical LSW coarsening theory (see
e.g. [56] and references therein) is applied:

r̄3 − r̄3
o = kcot (15)

where r̄ is the average radius of the precipitates, ro is the
average initial radius of the precipitates and kco is the
rate constant for coarsening. By assuming that ro � r̄
and using that 1/Np is proportional to r̄3 it is derived:

d(1/Np)

dt
= kN (16)

where kN is a constant. It thus follows:

Np =
(

kN t + 1

No

)−1

(17)

Using the latter two equations together with Equations
7–11 yields transformations functions for given co, σs ,
No and k. A range of combinations of these parameters
was investigated, and in all cases the transformation
could be fitted well with Equation 3.
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